Historical Geography of the Waasland polders

Landscape evolution and interactions between social and ecological processes

Dr. Iason Jongepier – UA – Dept. History
Presentation outline

1. Holocene evolutions
2. Medieval evolutions
3. Tactical inundations
4. Remaining embankment: Doelpolder
5. Re-embankments: Prosperpolder
6. Impact society on ecology
7. Impact ecology on society
8. Interactions
- Waasland Scheldt polders (BE)
- Land of Saeftinghe (NL)
1. HOLOCENE
Historical Geographical overview

- Holocene

Legend:
- Coversand
- Peat
- River

Present-day river Scheldt

1850 BP

Kieldrecht

Verrebroek

Doel

Beveren
2. MEDIEVAL PERIOD
Medieval period

- North of the area: embankments by abbeys/lords
Medieval period

- South of the area: peat extraction Counts of Beveren
End of medieval period.
3. TACTICAL INUNDATIONS
• Tact
4. REMAINING EMBANKMENT: DOELPOLDER
Change in size

ARA, Kaarten en Plannen II, 8623
5. RE-EMBANKMENTS
Main embanker: Arenberg family

- Acquisition Seigniory Beveren 1575/1613

- Evolution in strategy
 - Before 1750: traditional (land lords/co-embankers)
 - After 1750: transformation of the landscape

- Through active embankment practises
 - Monopolist position
 - Not according to entrepreneur-model
 - Expert advice
 - ‘Aggressive’ embankment
 - Rational organisation of exploitation
« Classical » income

Melselebroek total (Guilders)
Beverenbroek total (Guilders)
Total (Guilders/CPI index)
Wheat price (index)
Co-embanking
Active embanking

- ca 1758 - Bolder intertidal area
- 1767 - Intertidal area at Moerspui
- 1772 - Intertidal area Rilland/Maire/Bath
- ca 1787 - Intertidal area in between Hulst and Saeftingen
- ca 1789 - Hoofdplaat intertidal area
- 1804 - Saeftingenpolder
- 1806 - Intertidal area of St. Albert
- ca 1828 - Hellegat
- ca 1845 - Mouth of the Braakman
- Unknown (19th C.) - Intertidal area at Boekhoute/Weterdijk
- 19th C. - Intertidal area Olieslager
- 1925 - Hellegat

Legend:
- % Tidal channel
- % Tidal flat
- % Tidal marsh
- Estuarine
- Nieuw-Arenbergpolder
Rational landscape design

Nieuw-Arenbergpolder (1729-1784)
Innovative agriculture

Prospelpolder (1846)
Heritage Prosperpolder
6. IMPACT SOCIETY ON ECOLOGY
Landscape reconstructions

- 1570
 - Original configuration
- 1625
 - Tidal marsh
 - Re-embankments
- 1700
 - Inundations
- 1791
 - Re-embankments
- 1852
 - Re-embankments
Surface equilibria

- Based on historical maps/DEM
- Intertidal area in equilibrium state:
 - Large proportion tidal marsh
 - Smaller % tidal flat/channel

- Turning point around 1850-1900
 - Stabilization embankment activity
Equilibrium only reached after > 60 years after last embankment.
Fossilization

Cross section 1

DECLINING PARTICLE SIZE

INCOMING TIDE

Tidal marsh
Flat
Channel

Cross section 2

DECLINING PARTICLE SIZE

Sedimentation

Clay
Sandy loam
Sand

Tidal channel
Tidal flat
Tidal marsh
Dike
New dike (Seaward)
Sandy loam
Sand
Old dike (Landward)

Cross section 2
Fossilization

- Clay: former tidal marsh
- Sandy loam: +- former tidal flat
- Sand: +- former tidal channel)
7. IMPACT ECOLOGY ON SOCIETY
Soil conditions & land value

Legend

Average classification per plot
- 1,00 - 1,49
- 1,50 - 2,49
- 2,50 - 3,49
- 3,50 - 4,49
- 4,50 - 5,00
Soil conditions & land value

- Clay (former marsh): high value
- Sandy loam (former tidal flat): medium value
- Sand (former tidal channel): low values
- But... normalization over time
Soil conditions & crop rotation

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
<th>Class 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Fallow (++)</td>
<td>Fallow</td>
<td>Fallow</td>
<td>Fallow/Rye</td>
<td>Rye</td>
</tr>
<tr>
<td>Year 2</td>
<td>Rapeseed (-)</td>
<td>Rapeseed</td>
<td>Rapeseed</td>
<td>Wheat</td>
<td>Clover/Potatoes</td>
</tr>
<tr>
<td>Year 3</td>
<td>Barley (-)</td>
<td>Barley</td>
<td>Wheat/Barley</td>
<td>Oats/Beans</td>
<td>Rye</td>
</tr>
<tr>
<td>Year 4</td>
<td>Beans (+)</td>
<td>Beans</td>
<td>Beans</td>
<td>Rye</td>
<td>Oats</td>
</tr>
<tr>
<td>Year 5</td>
<td>Oats (-)</td>
<td>Oats</td>
<td>Wheat</td>
<td>Barley/Beans</td>
<td>Rye</td>
</tr>
<tr>
<td>Year 6</td>
<td>Clover (+)</td>
<td>Clover</td>
<td>Rye/Potatoes</td>
<td>Oat</td>
<td></td>
</tr>
<tr>
<td>Year 7</td>
<td>Barley (-)</td>
<td>Barley</td>
<td>Oat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 8</td>
<td>Beans (+)</td>
<td>Beans</td>
<td>Clover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 9</td>
<td>Wheat (--)</td>
<td>Wheat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 10</td>
<td>Oats (-)</td>
<td>Oats</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL INCOME (fl./ha)
- Year 1: 1274.74
- Year 2: 1133.78
- Year 3: 819.97
- Year 4: 474.99
- Year 5: 270.29

DEDUCTIONS (fl./ha)
- Year 1: 719.29
- Year 2: 668.93
- Year 3: 541.18
- Year 4: 313.49
- Year 5: 194.61

PROFIT (fl./ha)
- Year 1: 555.45
- Year 2: 464.85
- Year 3: 278.79
- Year 4: 161.5
- Year 5: 75.68

PROFIT PER YEAR (fl./ha)
- Year 1: 55.54
- Year 2: 46.48
- Year 3: 34.85
- Year 4: 26.92
- Year 5: 18.92

TAXABLE INCOME PER YEAR (fr./ha)
- Year 1: 105
- Year 2: 88
- Year 3: 65
- Year 4: 50
- Year 5: 25

More complex rotational systems on high value lands.
8. INTERACTIONS
Simple interaction scheme

Society

ACTORS (II)

EMBANKMENT (proces) (II)

TOOLS: HISTORICAL MAPS (I)

EMBANKMENT SOIL PATTERN (III & IV)

HISTORICAL AGRICULTURE (IV)

Ecology

PHYSICAL PROCESSES (III)

INTERTIDAL AREA (III)

INTERTIDAL AREA SEDIMENTATION PATTERN (III)

Interaction

Translation?
Complex interaction Scheme

Embankment (process)

ACTORS
- Typical Early Modern: Consortia
 - Risk spreading
 - Risk manipulation
 - Urban capital
- Waaland polders specific: Arenberg family
 - Active embankment policies
 - "Aggressive" embankment tactics
 - Capitalistic approach

Economic situation
- Profit maximization

Political situation
- Registration

TOOLS:
- Preparation
- Management
- Registration
- Designed landscapes

TOOLs: historical maps

1. EMBANKMENT INTERVAL

2. EMBANKMENT SIZE

Embanked surface

Interactions
- Short intervals prevent equilibria (+2)
- Minimum intertidal area height
- Remaining intertidal area height (+1)
- Remaining % marsh/flat (+2)
- Minimum proportion tidal marsh (+1)

Intertidal area

INTERTIDAL AREA SEDIMENTATION PATTERN
- Tidal channels
 - Sand
 - Coarse material
 - Close to source
- Tidal flats
 - Sandy loam
 - Fine material
 - Far from source
- Tidal marsh
 - Clay
 - Complex

Society

Ecology

AGRICULTURE
- Land use: Meadow ➔ Arable land ➔
- Holding size: Small ➔ Large ➔ Small
- Land value: Low ➔ High
- Crop rotation: Simple ➔ Complex

Embankment soil pattern
- Former channels
- Former flats
- Former marsh
- Sand ➔ Sandy loam ➔ Clay

Tidal channel evolution
- Particle size settlement properties
- Sediment supply
- Mean High Water Level

1. Intertidal sedimentation VERTICAL EQUILIBRIUM (62-90 years)

2. Intertidal SURFACE % EQUILIBRIUM (85-97 years)
Thanks for your attention!