Regenwormen en de broeikasgasbalans van de bodem

- Bodems zijn belangrijk voor de uitstoot van broeikasgassen
- Regenwormen zijn belangrijk voor de bodem
- Wat is de invloed van regenwormen op broeikasgasemissies?

Earthworms and the soil greenhouse gas balance

Ingrid M. Lubbers

Overview

- Greenhouse gas emissions
- On earthworms
- Main research question
- Thesis contents
- Meta-analyses I and II
- Conclusions / recommendations

Hockey sticks....

Hockey sticks....

Hockey sticks....

For quality of life

Controlling factors for N₂O emission

- Nitrogen
- Carbon
- Moisture content
- pH
- Temperature

- \leftarrow e.g. Fertilization
- \leftarrow e.g. Residue management
- \leftarrow e.g. Irrigation
- \leftarrow e.g. Liming

[Granli and Bockman, 1994]

Controlling factors for N₂O emission

- Nitrogen
- Carbon
- Moisture content
- pH
- Temperature

Strongly elevated in casts

On earthworms

Earthworms can:

WAGENINGENUR

- increase mineral N and available C by mixing crop residues into the soil
- change the anaerobicity through their burrowing activity
- stimulate microbial activity by their intestinal mucus

On earthworms: increased C sequestration?

ARTICLE

Received 28 Apr 2013 | Accepted 9 Sep 2013 | Published 15 Oct 2013 DOI: 10.1038/hom

Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

Weixin Zhang¹, Paul F. Hendrix², Lauren E. Dame², Roger A. Burke³, Jianping Wu⁴, Deborah A. Neher⁵, Jianxiong Li⁶, Yuanhu Shao¹ & Shenglei Fu¹

European Journal of Soil Science, June 2004, 55, 393-399

doi: 10.1111/j.1365-2389.2004.00603.x

Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts

H. Bossuyt^a, J. Six^b & P. F. Hendrix^{a,c}

^aInstitute of Ecology, University of Georgia, Athens, GA 30602, ^bDepartment of Agronomy and Range Science, University of California, Davis, CA 95616, and ^cDepartment of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA

European Journal of Soil Science, August 2005, 56, 453-467

doi: 10.1111/j.1365-2389.2004.00696.x

Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity

M. M. PULLEMAN^{a,b}, J. SIX^{b,c}, N. VAN BREEMEN^a & A. G. JONGMANS^a

^aLaboratory of Soil Science and Geology, Wageningen University, PO Box 37, 6700 AA Wageningen, The Netherlands, ^bNatural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA, and ^cUniversity of California Davis, Department of Agronomy and Range Science, One Shields Avenue, Davis, CA 95616, USA

ELSEVIER

Soil Biology & Biochemistry 37 (2005) 251-258

Soil Biology & Biochemistry

www.elsevier.com/locate/soilbio

Protection of soil carbon by microaggregates within earthworm casts

Heleen Bossuyt^{a,*}, Johan Six^b, Paul F. Hendrix^{a,c}

^aInstitute of Ecology, University of Georgia, Athens, GA 30602, USA ^bDepartment of Agronomy and Range Science, University of California, Davis, CA 95616, USA ^cDepartment of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA

Received 2 January 2003; received in revised form 18 February 2004; accepted 10 July 2004

On earthworms: increased C sequestration?

C stabilization in the soil

To what extent is C stabilization as affected by earthworms offset by earthworm-induced GHG emissions?

Thesis contents

- 1. Greenhouse-gas emissions from soils increased by earthworms (*Nature Climate Change, 2013*)
- 2. A simple and effective method to keep earthworms confined to open-top mesocosms (Applied Soil Ecology, 2013)
- 3. Earthworm-induced N mineralization in fertilized grassland increases both N_2O emission and crop uptake (European Journal of Soil Science, 2011)
- 4. Earthworms can increase nitrous oxide emissions from grassland: a field study (Agriculture, Ecosystem and Environment, 2013)
- **5.** Residue incorporation depth is a controlling factor of earthworm-induced nitrous oxide emissions (*Global Change Biology*, 2012)
- 6. Earthworms reduce the greenhouse gas mitigation potential of no-tillage soils *(under review with Nature Communications)*
- 7. Enhanced decomposition and stabilization of residue carbon by earthworms *(to be submitted in December 2014)*
- 8. Earthworms: Nature's free fertilizer? (*Scientific Reports, 2014*)

Thesis contents

- **1.** Greenhouse-gas emissions from soils increased by earthworms (*Nature Climate Change, 2013*)
- 2. A simple and effective method to keep earthworms confined to open-top mesocosms (Applied Soil Ecology, 2013)
- 3. Earthworm-induced N mineralization in fertilized grassland increases both N_2O emission and crop uptake (European Journal of Soil Science, 2011)
- 4. Earthworms can increase nitrous oxide emissions from grassland: a field study (Agriculture, Ecosystem and Environment, 2013)
- **5.** Residue incorporation depth is a controlling factor of earthworm-induced nitrous oxide emissions (*Global Change Biology*, 2012)
- 6. Earthworms reduce the greenhouse gas mitigation potential of no-tillage soils *(under review with Nature Communications)*
- 7. Enhanced decomposition and stabilization of residue carbon by earthworms *(to be submitted in December 2014)*
- 8. Earthworms: Nature's free fertilizer? (Scientific Reports, 2014)

Earthworms: good and bad

Meta-analysis I:

"Earthworms are bad for global warming!" Meta-analysis II:

"Earthworms are great for crop production!"

Meta-analysis I: overall effects on GHGs

- 57 peer reviewed studies
- **1990 2011**
- Cumulative emissions (CO₂ & N₂O) from bulk soil
- With and without earthworms
- Clearly defined experimental period
- Effect of earthworms on:
 - CO₂
 - N₂O
 - Soil organic carbon

Meta-analysis I: overall effects on GHGs

[Lubbers *et al.*, 2013]

The soil greenhouse balance

- The meta-analysis included very few studies with growing plants
- Wouldn't increased primary production compensate for increased CO₂ emissions?
- How do increased CO₂ emissions (33%) compare to plant growth?
 - %

Meta-analysis II: effects on plant growth

- Agricultural fields
- 60 studies, 467 observations, all continents (- Antarctica)
- All major grain crops, grasslands, etc....
- **1910 2013**
- Effect of earthworms on:
 - Aboveground biomass
 - Yield
 - Shoot / root ratio
 - N concentration

Meta-analysis II: effects on plant growth

But how do they do this?

Gilbert White (1777): "... by boring, perforating, and loosening the soil, and rendering it pervious 1. Soil structure to rains and the fibres of plants, by drawing straws and stalks of leaves and twigs into it; most of all, by throwing up such infinite numbers of lumps of earth called worm casts which, 2. Fertilization being their excrement, is a fine manure for grain and grass ..."

- 3. Biocontrol of pests and diseases
- 4. Stimulation of symbionts
- 5. Production of plant-growth regulating substances

Meta-analysis II: plant groups

Meta-analysis II: pasture types

Meta-analysis II: N fertilization

Meta-analysis II: Residue application

Meta-analysis II: Earthworm density

Conclusions / Recommendations

Meta-analysis I:

"Earthworms are bad for global warming!"

Meta-analysis II:

"Earthworms are great for crop production!"

- CO₂ emissions +33%
- N₂O emissions +42%
- No indication for effect on SOC stock

"... at least if mankind applies too much nitrogen and doesn't manage residue well..."

- Plant biomass +24% Greatest results when:
 - No N fertilization is applied
 - Residue application is high

"... especially when mankind cannot apply enough nitrogen and manages crop residue well..."

Thank you!

Jan Willem van Groenigen Lijbert Brussaard Kees Jan van Groenigen Birthe Paul Estefania González Mirjam Pulleman Wilfred Otten Johan Six Steven Fonte Eduard Hummelink

