Mitigation of ammonia emission from agriculture

Gerard Velthof

Outline

- Nitrogen policies
- Sources of ammonia in agriculture
- Mitigation of ammonia emission
- Emission factors of applied manure and fertilizer
- Mini break
- National Ammonia Model Agriculture
- Trends since 1990 and outlook for 2030
- Challenges

Nitrogen policies

- Ammonia (NH₃) and nitrogen oxides (NOx: NO and NO₂)
 - Emission ceilings:
 - NEC Directive and UNECE Gothenborg protocol
 - Biodiversity (nature polic)
 - EU birds and habitats directive (Natura 2000)
- Nitrate (NO₃⁻):
 - EU Nitrates Directive
 - EU Water Framework Directive
- Nitrous oxide (N₂O)
 - UNFCCC Kyoto/Paris Convention

Sources of ammonia in agricultural systems

- Housing and manure storage
- Housing systems
- Manure storage

Soils

- Applied manure
- Grazing
- Applied fertilizer (mineral and organic)
- Crop residues

Mitigation of ammonia emission

Main mechanisms of measures to decrease NH₃ emission

- Decrease ammonium content in manure and/or soil
- Decrease pH
- Decrease contact of ammonium with air
- Trap volatilized ammonia

Decrease ammonium content in manure and/or soil

- Less manure production/application
- Less fertilizer application
- Low protein feed
- Urease inhibitors
- Adsorption in soil (CEC)
- Immobilization (straw, additives, bedding materials in housings)
- Manure separation in liquid and solid fraction

Decrease pH

- Acidification
- Soil processes: nitrification and NH₄ uptake plants
- Ammonia emission itself

Decrease contact of ammonium with air

- Cover stored slurry
- Rapid manure removal from floor housing
- Injection or incorporation of manure in soils
- Manure application during/before rain/add water

Trap volatilized ammonia

- Air purification in livestock housing
 - Acid traps
 - Biological traps (nitrification)

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

Manure application and grazing

Sources: NEMA; Huijsmans et al.; Bussink et al.¹⁰

Manure application and grazing

Sources: NEMA; Huijsmans et al.; Bussink et al.¹¹

Mineral fertilizers

Emission factors derived from Bouwman et al. (2002):
fertilizer type, soil pH, CEC soils, crop: average for NL

Mini break

National Emission Model Agriculture NEMA

Used for calculation emission at national scale

- Calculations based on: activity x emission factor
 - Activity data: number of animals, type of feed, housing types, fertilizer use, manure application types etc.
 - Different sources, e.g. agricultural census
- Emission factors (% of N or ammoniacal N (TAN):
 - Housing, manure and fertilizer application, etc.
 - Measurements, literature

National Emission Model Agriculture NEMA

15

Trend in emission

Recent trends in ammonia emission

Factors that increased emission:

- Increase of number of dairy cattle
- Higher milk production per cow
- Higher protein content of grass roughage
- Less silage maize/more grass in diet cows

Factors that decreased emission:

- Higher implementation rate of low emission housing
- Higher implementation rate of low emission application
- Lower protein content concentrates

Source: Van Bruggen et al. 2020 CDM, 2020

17

Recent trend and estimate 2020-2030

Emission reduction targets 2030

Further reduction of ammonia emission?

Possible measures

	million kg NH3
More grazing	0.5
Water dilution slurry applied with shallow injection	1-2
Low emission housings	4-6
Decrease N content feed	5-11
Less livestock near Natura 2000	5

Source: PBL; Groenestein et al., 2019

- Effects uncertain: low emission housing and application, reduction protein content in roughage
- High costs
- Sufficient to reach target for 2030?

Conclusions

Large number of measures to reduce ammonia emission

Strong decrease in ammonia emission since early nineties

- Low-emission application techniques very effective
- Recent years: increase in ammonia emission
 - increase in number of cattle and milk production per cow, more N in roughage

Large challenges to reduce emission towards 2030

Thank you!

