The Dutch nitrogen crisis Historical perspective and potential solutions

Webinar NBV 12 Juni 2020

Wim de Vries

Contents

The Dutch nitrogen crisis: air quality and biodiversity

- Nitrogen effects: eutrophication and acidification
- Derivation of critical nitrogen loads
- Problem in historical perspective and current deadlock
- The broader perspective of nitrogen

A way forward

- Evaluation current N policy versus Remkes and my advice
- Circular agriculture

Effects of nitrogen deposition op nature: the old acid rain problem

Decrease in diversity of plants due to: Eutrophication: N excess Acidification: Ca, Mg, K deficiency

De Vries et al. (2017) Nitrogen most important cause ongoing acidification

Doorgaande verzuring van Oorzaken en gevolgen voor het bosecosysteem

N transformations en H⁺ production/consumption

Details on nitrogen transformations and acid production and consumption

Acid consumption by NH_3 in air $NH_3 + H^+ < --> NH_4^+$

Acid production by NH_4 in soil: $NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$ (nitrificatie)

Acid production by NO_2 in air 4 NO_2 + O_2 +2 H_2O -> 4 NO_3 + 4 H^+ (oxidation)

Acid consumption by uptake NO₃ or transformation of NO₃ to N₂ $5 \text{ CH}_2\text{O} + 4 \text{ NO}_3 + 4 \text{ H}^+ ->$ $2 \text{ N}_2 + 5 \text{ CO}_2 + 4 \text{ H}_2\text{O}$ (denitrification)

Acidification only occurs if NO_3 (by NOx) or after nitrification of nH3) leaches from the soil

Source: De Vries and Breeuwsma, 1987

Derivation of critical nitrogen loads (KDWs)

Critical N loads are derived by:

- N addition experiments
- Effects N deposition over time
- Effects N deposition over gradient
- Model calculations

Critical nitrogen loads Kritische depositiewaarden (KDWs)

Emission-deposition-policy since 1990

- 90'ties: Separate emission protocols SO₂, NO_x and NH₃
- 1999: Combined S-N-O3 Gothenburg Protocol (UN-ECE)
- 2001: NEC directive (EU)
 - Linked to health impacts and habitat protection by N, S
 - Generic objectives; NL: 128 kton $NH_3/260$ kton NO_x 2010
- 1992 Habitat Directive
 - Habitat protection
 - Requires specific objectives per Nature area
 - Nitrogen not explicitly mentioned (external effect) but now linked to N deposition

Decrease in nitrogen emission and deposition 1990-2017 in the Netherlands

Emissie ammoniak (NH_) door land- en tuinbouw per diercategorie

Ammonia emissions decreased by more than 60% in 1990-2017, mainly due to **low-emission fertilization**, covering manure storage, low-emission stables, livestock reduction, protein-poor feed. No more ammonia reduction since 2012 (release of milk quota 2015; during PAS). NOx reduction has continued

Emissie stikstofoxiden (NO) per sector

2019 PAS rejected by Raad van State The Nitrogen crisis

The current N crisis

- Since the eighties ("acid rain"), emissions of ammonia (NH₃) and nitrogen oxides (NOx) have decreased by> 50%
- Nevertheless, "current" N deposition values exceed critical loads (KDWs) in 75% of the approximately 160 nature reserves
- Purpose of the PAS scheme: to slightly reduce deposition by giving a license based on reductions by other economic activities
- Permits issued on the basis of expected reductions that were not met
- The Council of State rejected PAS in May 29 2019
- Construction sector (with <1% contribution) also included in PAS</p>
- Reductions needed mainly in the agricultural sector

Effects of N fertilizer on food production

- N fertilizer increases crop yields by a factor of 3-6.
- About 50% of the world's population is fed by N from fertilizers.

It is estimated that an additional 2-3 billion people will be fed by 2050.

Nitrogen losses to air and water in the food chain

After Galloway and Cowling (2003)

Directives to reduce N use/N losses in view of related impacts

Current Dutch nitrogen policy

License for activities causing N emissions based on permissible increase in deposition on N-2000 areas using a model (AERIUS). Questionable:

- No harmonization between national *emission* policy (NEC directive) and provincial *deposition* policy (Habitat Directive)
- Uncertainties in total N deposition and extra N deposition due to an economic activity on a local scale (ha)
- N emissions cause a deposition increase over hundreds of kilometers

Bouwstenen voor nieuw stikstofbeleid

Commission Remkes: evaluation

- Focus on integrated approach (link N use/emissions to water quality by N and P losses, GHG and PM emissions): nutrient balance accounting, avoid trade-offs.
- Balanced contribution of all sectors to reduction measures (50% reduction in both NO_x and NH₃ in 2030).
- NO_x generic (country level) and NH₃ region specific (provincial level): provincial nitrogen emission ceilings.
- Minimizing locally high emissions (deposition) near N-2000
- In addition, customized measures for provinces to reach KDW (contribution provinces to deposition mostly <25%).</p>
- Policy is legally tenable (result obligation and not an effort obligation or an endeavour) and feasible (not feasible for reaching all KDW's in 2040).

My options for a new policy versus Remkes

- Focus on reduction N surplus (reduces all N effects)
- Change from deposition policy to emission policy and determine target for emission reduction (mixed emissiondeposition; all KDW's reached 2040; not feasible, N import!)
- Divide the national emission ceiling for ammonia between the provinces (e.g. based on agricultural area).
- Do not give permission for extra activities < 1 km of N-2000.</p>
- Focus on reducing emission ceilings in neighboring countries to reach KDWs as much as possible.
- Introduce an ammonia emission rights system (N surplus reduction is not linearly related to NH₃ emission reduction).

Generic measures

- With management measures, significant ammonia emission reductions can be achieved:
 - Less protein in feed (less N import) and more grazing
 - Separate liquid and solid manure in stable
 - Dilute fertilizer with water or acidifying fertilizer
- Note:
 - Effectiveness of measure is not always well known
 - Effect of management measures must be monitored
 - Focus is on ammonia. Think about all N losses: Danger of pollution swapping
- In total 50% reduction in 10 years hardly (not) possible without livestock reduction. Reduce feed import is partly reduce livestock

Transition to circular agriculture

Change to circular agriculture (reduction of external N import)

- Focus on the use of residual flows by animals (limiting imports of nitrogen and phosphate via animal feed): fewer animals
- in addition to NH₃ (biodiversity), there are also NO₃ (groundwater), N (surface water) and N₂O (climate) problems
- Link to climate agreement:
 - Reduce nitrous oxide (N_2O) and methane (CH_4) emissions
 - Carbon (CO₂) sequestration in agricultural lands (climate smart)
 - Reduction of CO₂ emissions by reducing/stopping the lowering of ground water level in peat soils

Options to reduce nitrogen losses to air and water in the food chain

Thanks for the attention

