Nutrient recovery at large scale demoplants

NBV Webinar Towards agricultural circularity for nitrogen

10 July 2020, Inge Regelink (Inge.Regelink@wur.nl)

Content

Intro: Nutrient balances, manure surplus

Nutrient recovery technologies at demonstration plants

Life Cycle Assessment and Environmental Impact

Circular Agriculture

Goal:

Lower emissions to soil, water and atmosphere

Measures:

- Reduce the use of non-renewable fertilizers (P) and fertilizers produced by means of fossil energy (N, Haber Bosch proces)
- Manure and other organic waste streams as fertilizer

Manure surplus in The Netherlands

Unexploited sources of nutrients

Use of synthetic fertiliser: 230 million kg N and 5 million kg P

Surplus pig manure N: 18 million kg P₂O₅: 12 million kg Export

Waste water

N: 94 million kg P₂O₅: 31 million kg (18 kg N in sewage sludge)

Nitrification/denitrification, incineration of sludge.

Poultry manure N: 47 million kg P_2O_5 : 26 million kg Export and incineration

Organic waste

N: 90 million kg P_2O_5 : 30 million kg Ends up in residual waste and is incinerated

UNIVERSITY & RESEARCH

Application rate limits

Limit for total P

- Limit for N from animal manure (170 or 230/250 kg N/ha)
- Limit for N (effective N from manure and other fertilizer)

Separation of N-NH4, N-org and P (and OC, K, S)

Nutrient ratio in biobased fertilisers should be adjusted to meet crop demand

Figuur 12 Illustratie van de druk op de mestmarkt op gemeenteniveau

Nutrient recovery in practice: Demoplants

- BENAS (Germany) : Recovery of ammonium sulphate
- Groot Zevert (Netherlands): Recovery of NK concentrate
- AmPower (Belgium): Solid and liquid NPK fertiliser

www.systemicproject.eu 2017 til Nov-2021

7

BENAS (DE): N stripping

Energy: Biogas is converted in electricity. Feedstock: Maize sillage and poultry manure Residual heat is used on-site in the N stirpper Liquid fraction Direct application on agricultural lands Screw press **Products:** Press cake FGD-gypsum Solid fraction Ammonium Ammonium-sulphate Digestate sulphate Low-N digestate Improved **Filter press** Liquid fraction FiberPlus Digestion Solid fraction Digestate **Fertiliser suspension** Low-N fibres Calcium Digestate carbonate **€€** 10% more biogas, Screw press Dryer sell of AmS, less Liquid fraction Solid fraction **Biogas fibers** transport liquid digestate 8

N stripping and recovery as AmS

- Residual heat to increase temperature to speed up ammonia volatilization
- NH₃ CO₂ equilibrium controls pH
- Usually, ammonia is recovered by sulphuric acid

 $NH_4 \rightarrow NH_3 + H^+$ $HCO_3 + H^+ \rightarrow CO_2 + H_2O$

N stripping and recovery as AmS

- Temperature increase to speed up ammonia volatilization
- NH₃ CO₂ equilibrium controls pH
- BENAS implemented new proces to recovery ammonia with gypsum (waste product from industry)

 $2NH_3 + CO_2 + H_2O + CaSO_4 \rightarrow NH_4SO_4$ (I) + CaCO₃ (s)

Products: Liquid Ammoniumsulphate and solid calcium carbonate

Time for a five-minute break!

GROOT ZEVER

Ether

Groot Zevert Vergisting, Netherlands

Feedstock: Pig manure and co-products

Energy: Biogas to nearby dairy factory

- NK concentrate
- Solid fraction
- P-fertiliser

Products:

- Low-P organic matter
- Water
- NK fertiliser as alternative for synthetic N
- Less transport, lower costs 12

RENURE products

Desired utilisation of nitrogen by source in kg N/ha, per year

JRC advice End-of-Manure status for recovered products with >90% $\rm N-NH_4/N$

Demo trials

- Biobased Fertilisers Achterhoek:
 - Blends of NK concentrate with ammonium sulphate and urea,
 - low-emission injection to reduce emissions
 - Monitoring of crop uptake and nitrate leaching

Groot Zevert Vergisting, Netherlands

Feedstock: Pig manure and co-products

Energy: Biogas to nearby dairy factory

Products:

- NK concentrate
- Solid fraction
- P-fertiliser
- Low-P organic matter
- Water
- NK fertiliser as alternative for synthetic N
- Less transport, lower costs 15

Separation of phosphorus and organic matter

- Export of P-rich solid fraction expensive
- Now treated with sulphuric acid to leach out phosphate (>80% removed)
- Phosphate recovery with calciumhydroxide
- Low-P soil improver or peat replacer

Development of new markets for end products

- Low-nutrient organic fibres as alternative for peat in potting soil (GZV and Benas)
- Sustainable alternatives for excavation of peat
- Criteria on structure, smell, pH, salt, stability, nutrients, contaminants,.. Etc
- Additional leaching required to reduce salt (EC)
- High market value

AmPower: Biogas and organic fertiliser from biowaste

Feedstock: Organic residues agri-industry and households (no manure)

Energy: Biogas converted into electricity.

Waste heat used in dryer and evaporator

Products:

Dried organic fertiliser

Concentrated liquid NPK fertilizer

Business case: Reduce volume and hence costs for long-distance transport

SYSTEMIC receives funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement no. 730400.

Environmental Impact Assesment

- Agronomic efficiency (P availability, N mineralisation, NUE)
- Determine emissions of NH₄ and N₂O from biobased N fertiliser
- Heavy metals, 'emerging' pollutants

		EF (% mineral N)
Manure	Shallow injection grassland	16
Ammonium sulphate		11
KAS (calcium ammonium nitrate)		2.4
DAP (diammonium phosphate)		7.4

Source: National emission model for agriculture (NEMA) - 2019

Pot experiment with struvite and DAP

Life Cycle Analysis (LCA)

- Overall effect on greenhouse gas emissions (CO₂, N₂O, CH₄)
- Phosphorus is non-renewable
- Nitrogen is abudantly available: GHG emissions of recovery process should be lower than Haber-Bosch process
- Nutrient recovery compared with a reference scenario

Life Cycle Analysis

 Example LCA for NK concentrates from pig manure (no digestion)

Example LCA: NK concentrate from pig manure

- Example NK production from pig manure (no anaerobic digestion)
- Electricity consumption outweights reduction in transport
- But, methane emissions from manure storage on farm (not included) exceed overall emissions of treatment
- Prevention of CH₄ emissions from manure/products should have priority

Sources of nutrients: Manure, waste water and organic waste

Upscaling of nutrient recovery requires positive business case

Assessment of environmental impact and effects on GHG emissions

More Info

www.systemicproject.eu

www.groenemineralencentrale.nl

Contact:

Inge.Regelink@wur.nl

<u>LinkedIn</u>

